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Effect of martensitic transformation in Ti–15 at %
V b-phase particles on lamellar boundary
decohesion in c-TiAl
Part I Derivation of interface decohesion potentials

M. GRUJICIC, S. G. LAI
Program in Materials Science and Engineering, Department of Mechanical Engineering,
241 Flour Daniel Building, Clemson University, Clemson, SC 29634–0921, USA

Molecular statics atomistic simulations of the Ti–15 at % V body-centred cubic (bcc)
b-phase–c-TiAl interface and c–c lamellar boundary decohesion processes have been carried
out to determine the corresponding decohesion potentials. The potentials are subsequently
related to the dislocation structure of the interface–boundary. Atomic interactions have been
represented using the appropriate embedded atom method (EAM) interatomic potential
functions. The results obtained show that the decohesion potential functions are quite
complex because they have to account for the instabilities that occur under some modes of
interface decohesion and for the periodic character of the interfacial shear. Lastly, the use
of decohesion potentials to derive constitutive relations for continuum-type interfacial
elements and their implementation in the finite element method are presented.
 1998 Kluwer Academic Publishers
1. Introduction
c-titanium aluminide-based alloys are among the can-
didate materials for advanced engine applications
because of their light weight, relatively good high-
temperature mechanical properties and oxidation
resistance. However, their application is currently
limited by the relatively low levels of tensile ductility
and fracture toughness exhibited by these materials at
temperatures below approximately 600 °C. Various
approaches such as: alloying to reduce tetragonality of
the c-TiAl unit cell and hence promote dislocation
plasticity in this phase, for example [1], alloying to
enhance twinning as a deformation mechanism [2],
introduction of ductile grain-boundary precipitates to
help accommodate plastic strain incompatibilities
due to insufficient number of independent slip systems
in c-TiAl [3], etc., have been pursued with modest
success. Another quite promising toughening and
ductilizing mechanism for c-TiAl based on the intro-
duction of dispersed, metastable phases that can
undergo a deformation-induced martensitic trans-
formation has been utilized in the recent work of
Grujicic and Dang [4].

The phenomenon of transformation enhanced
toughness and ductility was first established by
Zackay et al. back in 1967 [5]. Since then, record
levels of ductility and fracture toughness have been
reported in high-strength steels and ceramics under-
going martensitic transformation. For example,
Haidemenopoulos [6] found a 25% increase in frac-
ture toughness of VAR 4340 and AF 1410 steels due
0022—2461 ( 1998 Kluwer Academic Publishers
to a deformation-induced face-centred cubic—body-
centred cubic (fccPbcc) martensitic transformation
in dispersed austenite without a significant loss in
materials strength. Furthermore, manifold increase in
fracture toughness, K

IC
), has been reported in selected

ZrO
2

based systems and ceramic matrices containing
ZrO

2
second phase particles [7], in which a tetra-

gonal—monoclinic stress-induced martensitic trans-
formation takes place.

The ability of the Ti-base (bcc b-phase to undergo
a martensitic transformation was utilized in the work
of Grujicic and Dang [4] to induce dispersed-phase
transformation toughening effects in c-TiAl. It is well
established, for example [8, 9] that martensitic trans-
formation in the Ti-base b-phase can result in forma-
tion of one of the following two martensites: an a@
martensite with hexagonal close-packed (hcp) struc-
ture or an aA martensite with a face-centred ortho-
rhombic (fco) structure. Which of the two structures
will form in a given alloy system is governed primarily
by thermodynamic stability of the b-phase, which, in
turn, is a function of the amount of the b-stabilizing
elements (V, Nb, Mo, Fe, etc.) and temperature. The
hcp a@ martensite is typically found in pure or
low-alloyed Ti, while alloys containing b-stabilizing
elements tend to form the fco a@@ martensite. In addi-
tion, stress- and/or strain-induced martensite typically
has the fco crystal structure. For example, Grujicic
and Narayan [8, 9] observed a bPa@@ stress-induced
martensitic transformation in the Ti—Al—V—Fe b-
phase.
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From the transformation toughening point of view,
the bPa@@ martensitic transformation is preferred be-
cause it is accompanied by a positive volume change,
and hence more effectively shields the crack tip and
reduces the effective crack-tip stress intensity factor. In
addition to the magnitude of the transformation vol-
ume change, the thermodynamic stability of the b-
phase relative to the a@@ martensite is another factor
affecting the extent of transformation toughening. To
maximize the transformation toughening effects, the
transformation volume change should be maximized,
while thermodynamic stability should be maintained
at an optimum level to ensure that the dispersed
b-phase remains metastable with respect to martensite
upon cooling to the ambient temperature but can
undergo a deformation-induced martensitic trans-
formation under the influence of the crack-tip stress
and strain fields. In addition to the relative thermo-
dynamic stability of the b-phase relative to martensite,
high-temperature chemical compatibility between the
b-phase particles and the c-TiAl is required to ensure
good thermal stability of the b—c two-phase material.
By carrying out a detailed thermodynamic analysis
and experimental investigation of the effect of alloy
composition on the thermodynamic stability of the
b-phase and the magnitude of the transformation vol-
ume change, Grujicic and Narayan [8, 9] identified
Ti—30/40Al—45/55 V (wt%) as the optimal chemical
composition range of the b-phase in the Ti—Al—V—Fe
system. Grujicic and Dang [4] subsequently carried
out an experimental investigation of a two-phase
c-TiAl alloy containing 10 vol % of the Ti—40Al—
32V—2 Fe (wt%) b-phase and found a two-fold in-
crease in fracture toughness relative to that in the
single-phase c-TiAl processed under identical condi-
tions. By carrying out a detailed microstructural ex-
amination of the fracture surfaces in the b—c alloy,
Grujicic and Dang [4] showed that the main toughen-
ing mechanism involves bridging of the cracks
propagating along the c-phase lamellar boundaries by
the b-phase particles undergoing a stress-induced
bPa@@ martensite transformation accompanied by
particle—matrix decohesion. While the crack bridging
by ductile particles and fibres is studied extensively,
for example [10], we are not aware of any work
dealing with the interaction between martensitic
transformation in the dispersed particles and their role
in the crack bridging process. In the present two-part
work, a numerical finite element analysis of c-TiAl
crack-bridging by transforming b-phase particles
accompanied by particle—matrix decohesion is
presented. Part I of this two-part paper deals with the
derivation of b—c interface and c—c lamellar boundary
decohesion potentials through the use of molecular
statics atomistic simulation method. These potentials
are next used to derive the constitutive relations for
the interfacial (continuum) elements that can be in-
corporated into a finite element analysis of a par-
ticle—matrix decohesion process. Such a finite element
analysis is carried out in Part II of this two-part paper
[11] to analyse the interaction between crack bridging
by particles of the b-phase and particle—matrix
decohesion.
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The organization of Part I of this two-part paper is
as follows: The embedded atom method (EAM) inter-
atomic potentials used are presented in Section 2.1.
The procedure used for construction of the computa-
tional crystal and the computational procedure for
determination of the interface decohesion potentials
are described in Sections 2.2 and 2.3, respectively. In
Section 3, the results are presented and discussed. The
main conclusions resulting from the present work are
listed in Section 4. Derivation of the constitutive rela-
tions for the b—c interfacial and c—c lamellar boundary
elements is discussed in the appendix.

2. Computational procedure
2.1. Interatomic potentials
The interatomic potentials that account for the atomic
interactions in the crystal are the required input for
the atomistic simulations and therefore their reliabil-
ity and accuracy are very critical for the atomistic
simulations to be able to represent the materials be-
haviour faithfully. In contrast to the traditional pair
potentials, the EAM interatomic potentials take into
account, in an implicit way, the many-body effects and
have therefore been proven more reliable in represent-
ing the atomic interactions in metals [12,13]. Within
the EAM scheme the total potential energy of the
system is given as the sum of two terms: (a) the inter-
action of each atom with the local electron density
associated with the remaining atoms in the system,
called the embedding energy and; (b) a pair-like inter-
action reflecting the electrostatic interactions between
the atomic cores. Thus, the total potential energy of
a system containing n atoms, E
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, can be written as
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Here, f a

+
(r
*+
) is the atomic electron density at a distance

r
*+

from the nucleus of atom j and the superscript a is
used to specify the species of atom j.

In the present work, the EAM-type interatomic
potentials are used for both the c-TiAl phase and the
b-Ti—V phase. c-TiAl has an L1

0
type ordered struc-

ture, and therefore when carrying out atomistic simu-
lations in this phase, one must account for the Ti—Ti,
Al—Al and Ti—Al interactions and for the fact that the
two atomic species reside on the separate sublattices.
Farkas et al. [14] recently developed the necessary
EAM-type potentials for c-TiAl and showed that
a reasonable agreement can be obtained between the
model predictions and the experimentally measured
properties of this phase. In the present work Farkas



potentials were used to describe Ti—Ti, Al—Al and
Ti—Al interactions within the c-TiAl phase.

The b-Ti—V phase has a disordered bcc structure,
and to simplify the calculations the b-Ti—V phase was
treated as a pseudomonoatomic phase composed of
‘‘effective’’ Ti—V atoms rather than individual Ti and
V atoms. The derivation of the EAM potential func-
tions for the pseudomonoatomic b-phase by applying
an averaging scheme to the corresponding EAM func-
tions of the constituent elements (Ti and V) was dis-
cussed in detail in our previous work [15]. The use of
the pseudomonoatomic approximation for the Ti—V
system appears appropriate because the two elements
in question differ slightly in both the atomic mass
(47.90 for Ti and 50.94 for V) and in the electronega-
tivity (1.4 for Ti and 1.9 for V) [16]. In our previous
atomistic simulation work [15], it was shown that the
use of effective Ti—V potentials leads to reasonable
prediction of a number of properties of the b-phase. In
particular, the bcc structure was found to be unstable
in pure Ti, metastable in Ti—15 at % V and stable in
Ti—25 at% V relative to the hcp structure at 0 and
100 K, which is consistent with available thermo-
dynamic data [17].

Atomistic simulations carried out in the present
work were based on the use of c-TiAl—b-Ti—V and c—c
computational bicrystals containing three types of
atoms, i.e. Ti and Al atoms associated with the c-TiAl
phase and effective Ti—V atoms constituting the Ti—V
b-phase. Therefore, there are six distinct atomic pairs
whose interactions (the /

*+
terms in Equation 1) must

be known. As mentioned earlier the pair potentials for
the Ti—Ti, Al—Al and Ti—Al pairs along with the cor-
responding embedding energy functions for the c-
phase have been determined by Farkas [14]. The
effective Ti—V atom—effective Ti—V atom pair poten-
tial as well as the corresponding embedding energy
have been derived in our previous work [15]. Hence
there remain only two unknown interatomic para-
meters, the Ti—effective Ti—V atom and the Al—effec-
tive Ti—V atom pair potentials, which must be
determined in order to be able to describe the atomic
interactions completely in the b—c computational bi-
crystals. The missing pair potentials /

*b
(i"Ti, Al,

b"the effective Ti—V atom) are constructed in the
present work using Johnson’s approach [18]
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where fb and /bb are, respectively, the atomic electron
density and the pair potential functions of the b-Ti—V
phase, which are obtained using the aforementioned
pseudomonoatomic approximation [15].

2.2. Problem description
In the present analysis particles of the b-phase disper-
sed in the c-matrix are assumed to be spherical in
shape, of the same size and behave identically. Under
such an assumption, the b—c two-phase material can
be partitioned into a regular three-dimensional array
Figure 1 Schematic representation of the uniform three-dimen-
sional array of hexagonal cylinders of c-TiAl matrix each containing
a spherical b-phase particle.

Figure 2 Schematic representation of the circular cylinder showing
a spherical b-phase particle located at the c—c lamellar interface.
Schematics of the three b—c bicrystals A, B and C and a c—c bicrystal
D used in the calculation of the corresponding interfacial decohe-
sion potentials are also shown.

of hexagonal cylinders of the c matrix each containing
one b-phase particle, Fig. 1. A further simplification is
next introduced that allows the particle crack-bridg-
ing process to be analysed as an axisymmetric prob-
lem. As shown by Tvergaard [19], the configuration
shown in Fig. 1 can be reasonably well approximated
by an infinite series of stacked circular cylinders each
containing a spherical particle. One of such cylinders
is shown in Fig. 2. To comply with the experimental
observations of Grujicic and Dang [4] that the b-
phase particles are precipitated along the c matrix
lamellar boundary, a [1 1 1]c lamellar boundary that
bisects the cylinder and the particle is introduced in
Fig. 2. Furthermore, the orientation relations between
the two phases are defined as: [1 1 0]b/[1 1 1]c ,
[0 0 1]b/[0 1 1]c and [1 1 0]b/[2 1 1]c . Also shown in
Fig. 2, is the schematic of three b—c (A, B, C) bicrystals
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Figure 3 Schematic representation of the b—c bicrystal, designated
as A in Fig. 2, used for determination of the (1 1 0)b/(1 1 1)c inter-
facial decohesion potential.

Figure 4 Schematic representation of the b—c bicrystal, designated
as B in Fig. 2, used for determination of the (0 0 1)b/(0 1 1)c interfacial
decohesion potential.

and one c—c (D) bicrystal used in the atomistic simula-
tion analysis of the b—c and c—c interface structure and
decohesion potentials. More detailed schematics of the
four bicrystals, containing the information about
the number of atoms, the orientation relationship and
the sizes of the joined single crystals and the interface
orientation, are shown in Figs 3—6. The single crystal
sizes are expressed in terms of the number of inter-
planar spacings, d

(uvw)
of the (u v w) planes.

The four atomistic bicrystals mentioned above are
formed by bringing into contact a rectangular c-TiAl
single crystal with either a rectangular Ti—V b-phase
single crystal or with a rectangular c-TiAl single crys-
tal. Prior to forming the bicrystals, the equilibrium
lattice parameters at 0 K in each phase are determined
by carrying out the potential energy minimization
in each single crystal through the use of the conjugate
gradient method [20]. For the L1

0
TiAl c-phase

the following lattice parameters are obtained:
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Figure 5 Schematic representation of the b—c bicrystal, designated
as C in Fig. 2, used for determination of the (1 1 0)b/(2 1 1)c inter-
facial decohesion potential.

Figure 6 Schematic representation of the c—c (c
1
—c

2
) bicrystal,

designated as D in Fig. 2, used for determination of the
(1 1 1)c1/ (1 1 1)c2 interfacial decohesion potential.

ac"0.3944 nm and cc"0.4010 nm, resulting in a
cc/ac ratio of 1.05, which is in fair agreement with its
experimental counterpart cc/ac"1.03 [21].

The b-phase with 15 at% V is chosen in the present
work because it was found previously [22, 23] that at
this level of vanadium, the bcc structure is metastable
and undergoes martensitic transformation only in the
presence of stress. When the amount of vanadium is
below 10 at %, the bcc phase is unstable and trans-
forms completely to martensite even in the absence
of stress [22, 23]. Contrary, when the amount of
vanadium is 20 at% or higher, the bcc phase remains
stable even in the presence of a Mode I crack loaded to
the stress level corresponding to the Griffith stress
intensity factor [22, 23]. For the Ti—15 at% V bcc
phase, the energy minimization procedure yielded the
lattice parameter ab"0.3186 nm, which is in reason-
able agreement with its experimental counterpart
(0.322 nm) [8].



Figure 7 Equillibrium configuration of the (11 11 0)b/(11 11 11 )c interface
(bicrystal A). Atomic positions projected onto (a) the (1 11 0)b/(2 11 11 )c
plane, and (b) the (11 11 0)b/(11 11 11 )c interface plane (interfacial disloca-
tions are marked as D

1
and D

2
).

In addition to specifying the orientation of the two
joined single crystals, the relative stacking of the
atoms in the two structures must be defined. For
example, in the case of bicrystal A, the (1 1 1)c and
(1 1 0)b planes, which are parallel to the b—c interface,
have, respectively, the ABCABC — and ABAB-type
atomic stacking. The two single crystals are joined in
such a way that the (1 1 0)b plane nearest to the inter-
face ‘‘coincides’’ with the (1 1 1)c plane that is next
nearest to the interface and vice versa, yielding the
stacking sequence AcBcCcAcBc DAbBbAbBb 2 .

2.3. Computation of interface structure
The equilibrium interface structure at 0 K is deter-
mined by minimizing the potential energy of each of
the four bicrystals using the conjugate gradient
method under flexible periodic boundary conditions
in the two directions parallel to the interface and free
surface boundary conditions in the direction normal
to the interface. The use of free surface boundary
conditions allows the spacing of the planes parallel to
and near the interface to adjust to the differences in the
atomic environment.

2.4. Computation of interface decohesion
potential

The interface decohesion potential for each of the four
bicrystals is determined by first regidly displacing the
Figure 8 Equilibrium configuration of the (0 0 1)b/(0 11 1)c interface
(bicrystal B). Atomic positions projected onto (a) the (11 11 0)b/(11 11 11 )c
plane, and (b) the (0 0 1)b/(0 11 1)c interface plane (interfacial disloca-
tions are marked as D

1
and D

2
).

two single crystals in each case in the normal, n, and
tangential, t and b, direction by different amounts.
These three displacements are, respectively, desig-
nated as º

/
, º

5
and º

"
. The potential energy of the

bicrystals is next minimized under the constraint that
the average displacements of the atoms in the interface
planes in each of the two joined crystals remain equal
to the rigid displacements º

/
, º

5
and º

"
. The differ-

ence between the energies of the bicrystal in the
displaced configuration and in the equilibrium config-
uration (obtained in Section 2.3.) expressed per unit
area of the interface is then defined as the value of the
interface decohesion potential, ', at given values of
º

/
, º

5
and º

"
.

3. Results and discussion
The results of the molecular statics simulations of
the equilibrium configuration of the three b—c inter-
faces and the c—c lamellar boundary are shown in
Figs 7—10. In each case, the projections of the atoms of
the two phases on the interface—lamellar boundary
plane are given as well as the projections on at least
one of the planes normal to the interface plane. Also in
each case, the interface dislocation arrays are marked
as D

1
and D

2
. A complete summary of the parameters

characterizing the interfacial dislocation structure for
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Figure 9 Equilibrium configuration of the (1 11 0)b/(2 11 11 )c interface (bicrystal C). Atomic positions projected onto (a) the (11 11 0)b/(11 11 11 )c plane,
(b) the (01 01 11 )b/(0 11 1)c plane, and (c) the (1 11 0)b/(2 11 11 )c interface plane (interfacial dislocations are marked as D

1
and D

2
).
each of the four cases including the line direction, the
Burger’s vector and the dislocation spacing is given in
Table I.

The results of the calculation of the decohesion
potential, ', for the four bicrystals are shown in
Figs 11—14. In each case, the variation of ' with
the normal displacement, º

/
, at various values of the

tangential displacement, º
5
, and º

"
"0 is given in

the respective figure (a) and the variation of ' with
the tangential displacement, º

5
, at various values of

the tangential displacement, º
"
, and the zero value of

normal displacement, º
/
, is shown in the respective

figure (b). The general behaviour of the interfacial
potential with the variation in the three displacements
can be summarized as follows:

1. For the pure normal decohesion process
where º

5
"º

"
"0, the interface potential increases

monotonically with the normal displacement, º
/
,

and asymptotically approaches a value defined as the
work of decohesion, '

$%#
.

2. At non-zero values of the tangential displace-
ments, for example, for º

5
O0 and º

"
"0 as in
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Fig. 11a, the decohesion potential first decreases and
then increases with the normal displacement, º

/
.

3. The shear behaviour of the interface is periodic
with the periodic lengths, which can be related to the
spacing of the interfacial dislocations. For example,
the periodic length for ' in Fig. 11b is equal to the
spacing, k, of the interfacial dislocations, D

1
, in Fig. 7.

4. The pure shear behaviour is unstable in some
cases because perturbations in the normal, º

/
(e.g. Fig.

11a) or in the orthogonal shear displacements (e.g. Fig.
11b) give rise to a reduction in energy.

5. In some cases as in Fig. 13b, the shear behaviour
is not symmetric. This appears to be the result of the
non-planar step and ledge character of the interface,
Fig. 9b.

Because the interfacial decohesion potentials for the
interfaces in the b—c bicrystals (A, B and C) will be
used in Part II of this two-part paper [11] for an
axisymmetric finite element analysis of the crack-
bridging process by b-phase particles in the presence
of particle—matrix decohesion, it is useful to have the
three b—c decohesion potentials derived in the present



Figure 10 Equilibrium configuration of the (11 11 11 )c1/(1 1 1)c2 interface (bicrystal D). Atomic positions projected onto (a) the (0 1 11 )c1/ (0 11 1)c2

plane, and (b) the (11 11 11 )c1/(1 1 1)c2 interface plane (interfacial screw dislocations are marked as D
1
).
work expressed using the same functional form. The
fact that pure shear is unstable in some cases, rules out
the use of the interface potential function proposed by
both Needleman [24] and Socrate [25]. Furthermore,
due to the non-symmetric character of the interface
shear, the universal function for ideal shear proposed
by Bozzolo et al. [26] could also not be used. After
testing a number of functions, the following function is
found to mimic best the overall relationship between
' and º

/
, º

5
and º

"
for the three b—c interfaces
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Furthermore, the c—c lamellar boundary decohesion
potential is found to comply with Equation 4. Table II
gives a summary of the parameters appearing in Equa-
tion 4 for the four interfaces—boundaries considered
here.

It should be noted that several parameters ap-
pearing in Equation 4 have a particular physical
meaning:

1. r
.!9

is the normal interface strength associated
with the pure normal decohesion processes, º

"
"

º
5
"0, and is associated with the normal interfacial

displacement, º
/
"d

/
.

2. k
"

and k
5
are the periodic lengths for pure shear

in the two shear directions b and t, respectively, and
are related to the spacing of the corresponding inter-
facial dislocations.

3. The shear interface strengths in the two direc-
tions, s

.!9,"
and s

.!9, 5
, are very complex functions

of the parameters and occur at º
"
:0.25k

"
,

º
/
"º

"
"0 and º

5
"0.25k

5
, º

/
"º

"
"0, respec-

tively.
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TABLE I Parameters characterizing interfacial dislocation for the three b—c and one c—c interfaces analysed in the present work

Parameter Dislocation type

D
1

D
2

(11 11 0)b/(11 11 11 )c interface: bicrystal A

Line direction, 1 [1 11 0]b [0 01 1]b

[2 11 11 ]c [0 11 1]c

Burger’s vector, b 1/2 ab [0 0 1]b 4 ab/(2)1@2[11 1 0]b

1/2 accc/(a2c#c2c )1@2[0 11 1]c 4 accc/(a2c#5 c2c )1@2[2 1 1]c

Dislocation spacing, k 7/2 ab 10 ab/(2)1@2
4 accc/(a2c#c2c )1@2 14 accc/(a2c#5 c2c )1@2

(0 0 1)b/(0 11 1)c interface: bicrystal B

Line direction, 1 [11 11 0]b [3 41 0]b

[11 11 11 ]c [31 2 2]c

Burger’s vector, b 2 ab/(2)1@2 [11 10]b ab/5[4 3 0]b

2 accc/(a2c#5 c2c )1@2[21 1 1]c accc/(9 a2c#25 c2c )1@2[4 3 3]c

Dislocation spacing, k 7 ab/(2)1@2 21 ab/5
10 accc/(a2c#5 c2c )1@2 20 accc/(9 a2c#25 c2c )1@2

(1 11 0)b/(2 11 11 )c interface: bicrystal C

Line direction, 1 [1 11 0]b [3 3 7]b

[11 11 11 ]c [11 11 31 ]c

Burger’s vector, b 1/2 ab [0 0 1]b ab/(134)1@2[71 71 6]b

1/2 accc/(a2c#c2c )1@2[0 11 1]c accc/(a2c#65 c2c )1@2[4 7 1]c

Dislocation spacing, k 7/2 ab 21 ab/(134)1@2
4 accc/(a2c#c2c )1@2 22 accc/(a2c#65 c2c )1@2

(1 11 0)b/(2 11 11 )c interface: bicrystal D

Line direction, 1 [0 11 1]c

Burger’s vector, b 1/2 accc/(a2c#c2c )1@2[0 11 1]c

Dislocation spacing, k 25/2 ac[(a2c#2 c2c )/(a2c#c2c )]1@2
The magnitude of the interface decohesion potential in
the limit º

/
PR, relative to its equilibrium magni-

tude at º
/
"º

"
"º

5
"0, is generally termed the

work of decohesion and is taken to be in the range of
1—10 Jm~2. The results given in Table II are generally
consistent with this range with the work of decohesion
for the c—c lamellar interface being one-third—one-half
of the ones for the three b—c interfaces. The normal
interface strength, r

.!9
, is generally assumed to be

0.01—0.02 times the material Young’s modulus, which
in the present case yields 0.7—1.4 GPa for the b-phase
and 1.6—3.2 GPa for the c-phase. The normal interface
strength data given in Table II are consistent with this
range of values only for the c-phase. For the b-phase,
the r

.!9
data given in Table II are larger by a factor

five—ten. Our preliminary work has shown that the
magnitude of r

.!9
is sensitive to the magnitude of the

atomic interaction cut-off radius and that r
.!9

can be
reduced by about one-half if the atomic interaction
cut-off radius is increased to include the contribution
of the third nearest neighbours.

As for the shear interface strength, it is generally
assumed to be a relatively small fraction of r

.!9
. An

examination of the results given in Table II, shows
that this is true for the case of the (1 1 0)b/(1 1 1)c
interface (bicrystal A) as well as for the (1 1 1)c1/ (1 1 1)c2

lamellar boundary. In addition, the shear resistances
in the b and t directions are quite similar in the case of
the bicrystal A. The latter finding is consistent with the
dislocation structure of the corresponding b—c inter-
4396
face for which the magnitude of the Burger’s vector
and the dislocation spacings are comparable in the
two shear directions. For the b—c interfaces in bicrys-
tals B and C, the shear resistances in the two direc-
tions are quite different from each other and, as in the
case of s

.!9, 5
for bicrystal C, the shear resistance can

be significantly larger than r
.!9

. This finding is a di-
rect consequence of the non-planar interface morpho-
logy in bicrystal C, which consists of steps and ledges
aligned in the b direction. Similarly, the presence of
a single array of dislocations in the case of c—c lamel-
lar boundary (bicrystal D) causes the two shear resist-
ances, s

.!9, 5
and r

.!9,"
to differ by more than an order

of magnitude.

4. Conclusions
Based on the results obtained in the present work, the
following conclusions can be drawn:

1. The decohesion potential for the b—c interfaces
and the c—c lamellar boundary are closely related to
the equilibrium dislocation structure of the corres-
ponding interface—boundary.

2. For the three b—c interfaces studied in the pres-
ent work, the normal interface strength is found to
vary by only about 40%.

3. The shear strength, on the other hand, can
vary by as much as a factor of 20 even for the same
interface, depending on the direction of shear. These



Figure 11 Variation of the decohesion potential for the
(1 1 0)b/(1 1 1)c interface with (a) normal displacement, º

/
, in the

[11 11 0]b/[11 11 11 ]c direction and (b) tangential displacements, º
5
and

º
"
, in the [0 0 1]b/[0 11 1]c and [1 11 0]b/[2 11 11 ]c directions, respec-

tively. For (a) º
5
: (—) 0 nm, (——) 0.05 nm, (2) 0.1 nm, (— ) —)

0.15 nm. For (b) º
"
: (—) 0 nm, (——) 0.1 nm, (2) 0.2 nm.

differences are a direct result of the type, the Burger’s
vector magnitude and the spacing of the dislocations
dominating the structure of the given interface.

4. The interface potentials for all the interfaces
studied in the present work can be described using the
same functional form.
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Appendix
A.1. Implementation of the interface

decohesion potential in the finite
element method

In Part II of the present work [11], the interface
decohesion potentials developed in Section 2.4. are
used in conjunction with the commercial finite ele-
ment code ABAQUS [27] to analyse the crack-
bridging process in the presence of particle—matrix
decohesion. The interface decohesion potentials are
incorporated into a user element library (UEL) sub-
routine that allows the user to define the contribution
of the interfacial (continuum) elements to the global
4397



Figure 13 Variation of the decohesion potential for the interface
(1 1 0)b/(2 1 1)c with (a) normal displacement, º

/
, in [1 11 0]b/[2 11 11 ]c

direction and (b) tangential displacements, º
5

and º
"
, in the

[11 11 0]b/[11 11 11 ]c and [0 0 1]b/[0 11 1]c directions, respectively. For
(a) º

5
: (—) 0 nm, (——) 0.1 nm, (2) 0.2 nm. For (b) º

"
: (—) 0 nm,

(——) 0.1 nm, (2) 0.2 nm, (— ) —) 0.3 nm.
4398
Figure 14 Variation of the decohesion potential for the inter-
face (1 1 1)c1/ (1 1 1)c2 with (a) normal displacement, º

/
, in the

[11 11 11 ]c1/[1 1 1]c2 direction and (b) tangential displacements, º
5
and

º
"
, in the [0 11 1]c1/[0 1 11 ]c2 and [2 11 11 ]c1/[2 11 11 ]c2 directions, respec-

tively. For (a) º
5
: (—) 0 nm, (——) 5 nm, (2) 10 nm. For (b) º

"
:

(—) 0 nm, (——) 0.1 nm.
TABLE II Decohesion potential parameters for the three b—c and one c—c interfaces analysed in the present work

Parameter Interface type

(1 1 0)b/(1 1 1)c (0 0 1)b/(0 1 1)c (1 1 0)b/(2 1 1)c (1 1 1)c1/ (1 1 1)c2

Designation A B C D
n-direction [11 11 0]b/[11 11 11 ]c [0 0 1]b/[0 11 1]c [1 11 0]b/[2 11 11 ]c [11 11 11 ]c1/[1 1 1]c2

t-direction [0 0 1]b/[0 11 1]c [11 11 0]b/[11 11 11 )c [11 11 0]b/[11 11 11 ]c [0 11 1]c1/[0 1 11 ]c2

b-direction [1 11 0]b/[2 11 11 ]c [1 11 0]b/[2 11 11 )c [0 0 1]b/[0 11 1]c [2 11 11 ]c1/[2 11 11 ]c2

d
/
, nm 0.05 0.05 0.05 0.05

k
5
, nm 0.321 0.454 0.681 12.35

k
"
, nm 0.454 0.454 0.321 0.578

a
0

!0.013 !0.21 !0.148 !0.039
a
1

!1.5 !1 0.42 !1
a
2

0 0 !0.2 0
a
3

0 0 !3.42 0
a
4

0.5 0 1.17 0
a
5

0 0 !5 0
r
.!9

, GPa 7.37 4.57 7.29 2.01
s
.!9 , 5

, GPa 1.09 11.77 29.2 0.160
s
.!9 ,"

, GPa 1.11 5.60 1.20 1.65
' (º

/
PR), J m~2 2.02 1.25 2.03 0.561



finite element model. In other words, for the given
nodal displacements of the interface elements pro-
vided to UEL by ABAQUS, the contribution of the
elements to the global vector of residual forces and to
the global Jacobian (element stiffness matrix) is
determined in the UEL subroutine and passed to
ABAQUS. The implementation of the interface de-
cohesion potential in the UEL subroutine is discussed
below.

Before implementing in the UEL subroutine, the
decohesion potentials developed in the present work
are simplified by averaging their shear behaviour in
each case. This is done in order to comply with the
axisymmetric geometry of a circular cylinder, Fig. 2.
We are currently working on crystal plasticity based
modelling of the crack-bridging process [28] in which
no simplifications are introduced into the decohesion
potential functions developed in the present work.

Each interface element is defined as a four-node
isoparametric element on the b—c interface or c—c
lamellar boundary S, as shown schematically in
Fig. A1. In the undeformed configuration (not shown
for brevity), nodes 1 and 4, and nodes 2 and 3 coincide,
respectively. A local co-ordinate system, consistent
with the directions that are tangent, t, and normal, n,
to the interface, is next assigned to the each element.
This is done by introducing two ‘‘internal nodes’’,
A and B, located at the midpoints of the lines 1—2 and
3—4, connecting the corresponding interface nodes of
the b-phase particle and c-TiAl matrix.

The interface displacements at the internal nodes
A and B are expressed in terms of the displacements
of the element nodes 1—4 as in the global co-ordinate
system z—r

ºA
/
"(º4

z
!º1

z
)cos h!(º4

r
!º1

r
)sin h (A1)

ºA
5
"(º4

z
!º1

z
)sin h!(º4

r
!º1

r
)cos h (A2)

ºB
/
"(º3

z
!º2

z
)cos h!(º3

r
!º2

r
)sin h (A3)

ºB
5
"(º3

z
!º2

z
)sin h!(º3

r
!º2

r
)cos h (A4)

An isoparametric co-ordinate g is next introduced
along the tangent direction with g(A)"!1 and
g(B)"1 and two linear Lagrangian interpolation
functions are defined as N

A
(g)"(1!g)/2 and

N
B
(g)"(1#g)/2.
The interpolation functions given above allow the

normal and the tangential components of the interface
displacements to be expressed in the form of their
values at the internal nodes A and B

º
5
(g)"N

A
(g)ºA

5
#N

B
(g)ºB

5
(A5)

º
/
(g)"N

A
(g)ºA

/
#N

B
(g)ºB

/
(A6)

The tangential and normal components of the forces
at modes A and B, i.e. FA

5
, FB

5
, FA

/
, FB

/
, which are work

conjugates of the corresponding nodal displacements
ºA

5
, ºB

5
, ºA

/
and ºB

/
are next determined through

the application of the virtual work to the interfacial
element

P
1

~1

d'(g)¸pr(g) dg" +
I/n, 5

+
N/A,B

FN
I
dºN

I
(A7)
Figure A1 Definition of the linear, four-node axisymmetric interface
element. Nodes 1 and 4 and nodes 2 and 3 coincide in the equilib-
rium (reference) configuration. Internal nodes A and B located at
the midpoints of segments connected corresponding nodes in the b
and c sides of the interface, two integration points marked as #and
a local t—n co-ordinate system are also indicated.

where ¸ is the A—B element length. The perturbation
of interface potential is expressed in terms of the
perturbations of the interface displacements at the
internal nodes A and B, ºA

5
, ºB

5
, ºA

/
and ºB

/

d'"

­'[º
5
(g), º

/
(g)]

­º
/

[N
A
(g)dºA

/
#N

B
(g)dºB

/
]

#

­'[º
5
(g), º

/
(g)]

­º
5

[N
A
(g)dºA

5
#N

B
(g)dºB

5
]

(A8)

By substituting Equation A8 into Equation A7 and by
choosing of the dºN

I
(N"A, B; I"t, n) perturbations

at a time to be unity and the remaining perturbations
to be zero, the corresponding FN

I
component of the

nodal force can be expressed as

FN
I
"P

1

~1

­'[º
5
(g), º

/
(g)]

­º
I

N
N
(g)¸pr(g) dg (A9)

Using a straightforward geometrical procedure and
imposing the equilibrium condition, the correspond-
ing residual nodal forces R*

r
and R*

z
(i"1—4) in the

global r—z co-ordinate system, are defined as

R1
r
"!R4

r
"FA

5
cos h!FA

/
sin h

R1
z
"!R4

z
"FA

5
sin h!FA

/
cos h H (A10)

R2
r
"!R3

r
"FB

5
cos h!FB

/
sin h

R2
z
"!R3

z
"FB

5
sin h!FB

/
cos h

The components of the Jacobian element are next
defined as

­R*
+

­º,
I

" +
I//, 5

+
N/A,B

+
+//, 5

+
M/A,B

­R*
+

­FN
I

­FN
I

­ºM
J

­ºM
J

­º,
I

(A11)
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where the components of the internal Jacobian
­FN

*
/­ºM

+
(i, j"n, t; N, M"A, B) are calculated by

differentiation of Equation (A9). The residual nodal
forces given by Equation A10 and the element
Jacobian given by Equation A11 are computed in the
UEL subroutine, and passed to ABAQUS for the use
in its global Newton scheme for accurate assessment
of kinematics.
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